APPLICATION OF NONLINEAR HEREDITARY STRAIN THEORY
TO DESCRIPTION OF STRESS RELAXATION IN METALS,
AND CONVERSION OF RELAXATION DATA TO CREEP

G. 8. Vorotnikov and L. Kh. Papernik

The possibility of describing relaxation and creep processes in metals and the possibility of
direct conversion of data obtained in one type of tests to another, within the framework of
the theory of hereditary creep based on the application of the Rabotnov nonlinear integral
equation [1], are investigated.

The relationship between the stress o(t) and strain € (t) appears in the one-dimensional case as [1]

el =o@) M K¢ -1smd 1

Here ¢(&) is the strain function, which is nonlinear in the general case; K(t—7) > 0 is a monotonic
decreasing influence function; A is a numerical factor.

Equation (1) is a fairly general form of the relationship between strain and stress. In particular,
when ¢(&)=Ee, Eq. (1) becomes the conventional linear hereditary law of strain

¢
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In the case of creep, when o(t) =o;=const, Eq. (1) becomes

t
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Equation (3) is expressed in the form of a bundle of similar curves at fixed times t, ty,... ino,e
coordinates at different initial stress levels o, 0y,,.... Hence, the validity of Eq. (1) is clear when iso-
chronous creep curves are similar.

The function 1+ AG(t) yields similitude factors for fixed values of t. When t =0, we have the instan~
taneous strain curve o = ¢(&).

The relaxation law will be expressed, when ¢ = €,=const, by the equation
6 (t) =0, 1 — LR (D] 4)
Here oy = ¢ (¢;),and R(t) is the integral of the resolvent kernel. The power-law kernels At% (where
A is anumerical coefficient and —1 < @ < 0) are more generally used in application to metals. Since the

parameter a is negative, Eq. (3) possesses an integrable singularity at zero. The existence of this singu-
larity is due to the behavior of the material when loaded.
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We assume
I (i
K{t—1) =TEFh

Here I' (@ + 1) is the Eulerian gamma function. The resolvent will then be the same as Rabotnov's 2
function [1}

B, —1) =@ — 1) S (— DH"B" (2 — r)latn
7 (B . T) ( T) néo T[{a+1)n +1)] (5)

Numerous properties of this function are detailed in [1, 2], and the feasibility of utilizing this func-
tion as the kernel of integral operators in problems in the linear theory of creep and relaxation is dis-
cussed,

Below we attempt to apply the mathematical tools provided by these functions to the study of relaxa-
tion and creep in metals within the framework of the nonlinear law (1).

We realize from Eq. (4) that the relaxation curves must be similar at different initial stress levels
0. This is confirmed by experiment in many instances.

In the case in point, Egs. (3) and (4) acquire the following respective forms:

a1
Pl ()] =0 [1 + —f%é';;“j)*] ©)

c(t):co[1+XSé¢(-x,t-—r)dt] >0 -

The determination of the parameters « and A and the function ¢ = ¢(g) can be approached from
two sides.
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The set of creep curves can be used to construct a family of isochronous curves and to determine the
parameters « and A in Eq. (6) and to then construct the curve of the instantaneous stress state o= ¢(g)
[3]. The theoretical relaxation curves are plotted on the basis of Eq. (7) with the values obtained for the
constants a and A.

On the other hand, the necessary characteristics can be determined from Eq. (7} by processing the
relaxation curves. That is the way we chose in our work.

Zvonoy et al. [4] considered a computer program for determining the characteristics of creep in
linear hereditary-elastic materials., This computer method can be applied to the case of nonlinear be-
havior of a material for the purpose of determining relaxation charaeteristics.

The gist of the method is as follows. Instead of approximating the relaxation curve with the aid of
Eq. (7}, we proceed to take the Laplace-Carson transform of the relaxation curve, and the resulting trans-
form is then approximated by the transform of Eq. (7), which appears in the form

s(p)sco[l-—«;}-?l%}?], s(p):pgc(t)e*ptdt ®)

Here p > 0 is the transform parameter,

The quadratic method for optimizing the parameters (generalizing to the nonlinear case in the least-
squares method) is then applied to the resulting transform, and the relaxation characteristics are deter-
mined without returning to the inverse transforms.

The method for determining the relaxation characteristics was programmed for a Minsk-2 digital
computer,

Stress relaxation curves for copper [5}, plotted for temperatures 20°, 165°, 235°C, were investigated
(see Fig. 1a).

First, the hypothesis on the similarity of the relaxation curves was verified. The relaxation curves
were plotted in (0y—ot)/oy, t coordinates (Fig. 1b). This procedure yielded data which are in excellent
agreement with the assumptions entertained. Each curve was then processed through the computer pro-
gram. The results of the computer processing for those values are

7T=20 7 =165 T =235

s == 15.58 8.54 5.93 3.18 9,50 7.50 5.85
o=—0.748 —0.812 0,861 0,765 —0.683 —0.627 . —0.5015
A== 0.421 0.386 0.379 0.405 0.147 0.158 0.1312

The averages of the relaxation parameters in Eq. (7) are

o = —{.80, A ==0.398 at  20°C
o = 0,65, A ==0.157 at 165° C
¢ =—0,50, A==0.131 at 235°C

With those assumptions the parameters o and A in Eg. (6}, which describes the creep process in
copper at those temperatures, will have the same values, and a family of isochronous curves at fixed t ¢can
be constructed when the curve of the instantaneous state ¢ = ¢(¢) is available,and these curves can then be
used to plot the curves for creep in copper.

Since the values of constant strains €, at which the relaxation experiments were staged are not indi-
cated by Davis [5], the pattern of nonlinearity cannot be discerned nor the instantaneous extension curves
constructed {rom the relaxation data. But inasmuch as the creep curves for the corresponding temperatures
are available, the values of the parameters o and A obtained for those temperatures can be used to construet
the instantaneous loading curves ¢ = ¢(g).

We illustrate this approach by the curve plotted for 235°C. We begin by plotting isochronous creep
curves for copper at 235°C in o, ¢ coordinates at different initial stress levels. These curves are shown
in Fig. 1c in the form of a bundle of similar curves at fixed times indicated on the graph. The similarity of
the isochronous creep curves confirms the validity of Eq. (1) for solving the problem posed.

Later on, an instantaneous loading curve was constructed on the basis of formula (6} by extrapolation
with each isochronous creep curve at the parameter values obtained & =—0.50 and A = 0.1312. By specify-
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ing different values of o, we obtain ¢(¢) values corresponding to the fixed time t; =20 h. The same calcula~
tions are then carried out for another fixed t, =50 h, etc. The ¢(¢&) values so obtained and the averaged
curve constructed on the basis of those values are presented in Fig. 1c. This curve is the one taken as the
instantaneous loading curve o = ¢(¢&) reflecting the nonlinear behavior of the material. The slight spread
of the values corresponding to the different isochronous curves in this instance serves as proof of the
validity of the use of the values of the parameters « and A found for describing creep.

Creep curves can be plotted for any o =const from the resulting instantaneous loading curve. Sub-
stitution of the o, values corresponding to the real curves in Eq. (6) and use of the ¢ = ¢(¢&) graph aid in
constructing the creep curves. These are plotted as dashed curves in Fig. 1d. The experimental curves
are plotted as continuous curves. The correlation between the predicted data and experimental data is satis-
factory. Subsequently, the ¢ = ¢(¢) curve so obtained can be approximated by any analytical dependence,
e.g., a power-law dependence.

The results of the calculations indicate that the use of nonlinear hereditary equations with fractional-
exponential kernels, applied to the description of stress relaxation in some metals and to the prediction of
creep from relaxation data, has yielded positive results.

The authors express their gratitude to Yu. N. Rabotnov for his kind attention to the progress of the
work and to V. A. Kominar for his much appreciated comments.
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